
Halting Offshore Wind Projects in Construction Will Undermine Electricity Reliability in New York and New England While Raising the Cost of Power

Seth Kaplan

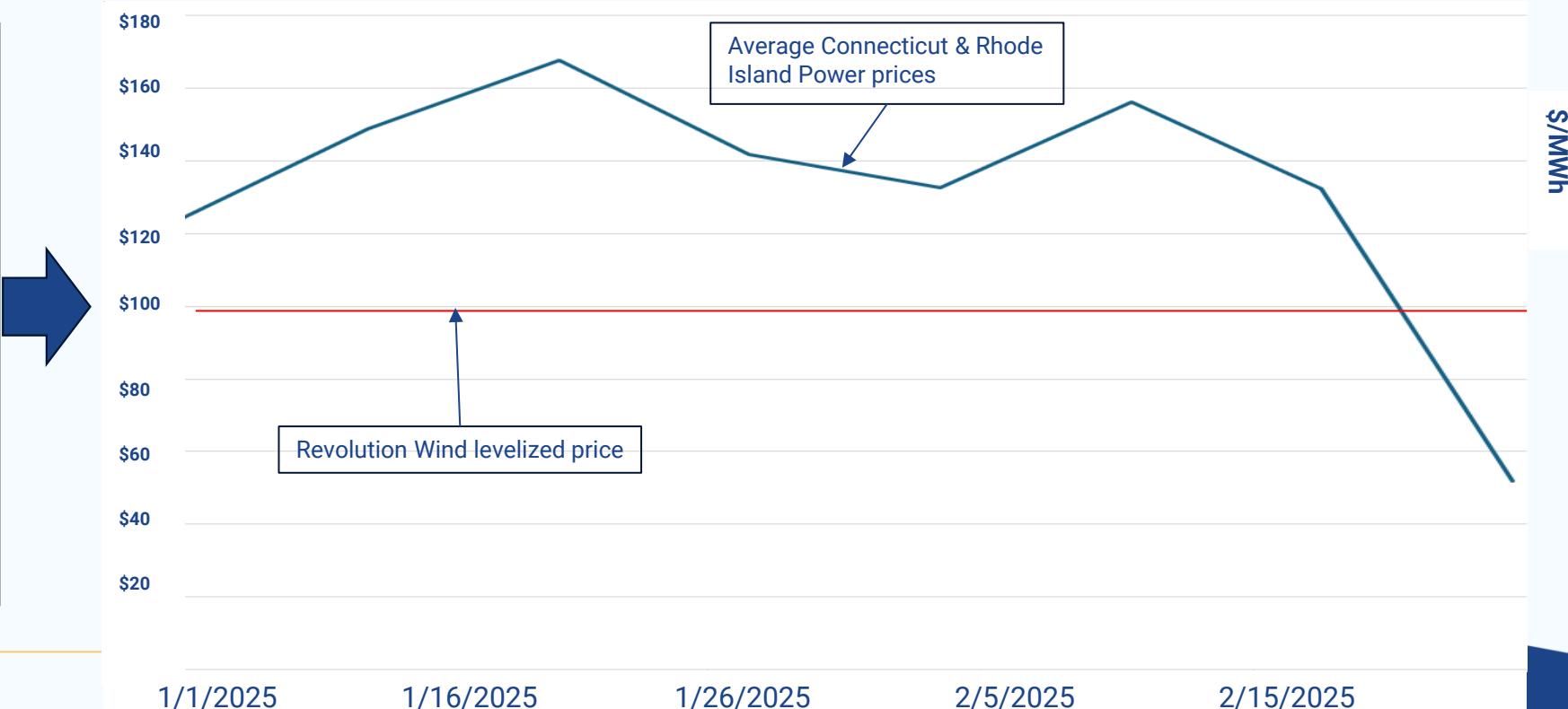
Vice President, Grid Strategies

January 11, 2026 (revised January 14, 2026)

Summary: Halting Offshore Wind Projects Will Undermine Electricity Reliability and Raise Costs Borne by Customers

Offshore Wind projects were selected and advanced by State governments for very real and still valid reasons: It is undisputed that Offshore Wind is the largest single source of currently available power that coastal states can tap into to meet their energy needs.

The “System Operators” responsible for keeping the New England and New York electricity systems reliable are depending on offshore wind to provide the power needed to keep the lights on and the economy moving – these projects are “baked into” system plans for meeting energy need.


Stopping Offshore Wind projects in construction creates a very real near-term risk of electricity shortfalls. Such shortfalls would cause spikes in prices and run a very real risk of painful and expensive outages. Similarly, halting progress on the other Offshore Wind projects “in the pipeline” create longer-term reliability risks.

Offshore Wind is part of the mix of resources that the States and system planners are depending on to meet customer needs – and all resources in that portfolio are needed.

The Absence of Offshore Wind Projects Will Raise Energy Costs for Customers

The presence of offshore wind generation in the wholesale energy and power markets, like other generation that takes the wholesale market price (like most nuclear and solar generation) instead of setting that price (like most natural gas or oil-fired generation), has a downward effect on those market prices. For example, an analysis conducted by Connecticut Department of Energy and Environmental Protection (DEEP) found that the Revolution Wind project would save all customers across New England roughly \$500 Million every year from this effect. The same effect can be expected in New York from projects there.

Electricity customers in Rhode Island & Connecticut who will be directly purchasing power from Revolution at a contracted price of \$99/MWh will see a direct benefit during many hours of the year compared to wholesale energy prices. This graph shows prices in January and February 2025 – winter days when prices consistently exceeded the leveled \$99/MWh Revolution Wind price.

New England's Official Reliability Authority Finds Offshore Wind Projects to be Critical for Keeping the Lights On

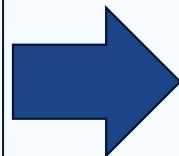
The Federally designated Electricity System Reliability Manager and Grid Operator for New England, ISO-NE, [has clearly stated](#):

- “Offshore wind resources can be a strong and steady source of energy that is injected directly into major load centers in New England, and their production profile during the winter is helpful for offsetting the effects of the constraints on the gas pipeline system,”
- “. . . our studies have shown substantial reliability benefits of offshore wind, primarily because it delays or displaces the consumption of gas and oil so that it will be more available in the subset of high demand periods when the wind does not blow,” and
- “. . . If the large amount of offshore wind that has been contracted for by the states is significantly delayed or ultimately does not materialize, the region would need to assess the potential impacts and determine what other options might be needed to meet resource adequacy needs in the future.”

ISO-NE's [response to recent actions suspending offshore wind construction](#) builds on this larger perspective:

- Noting that the suspended projects (Vineyard Wind and Revolution Wind) “are included in our near-term and future modeling and analyses to ensure adequate electricity for New England . . . and are particularly important to system reliability in the winter when offshore wind output is highest and other forms of fuel supply are constrained,” and that
- Stopping these projects, will “stifle future investments, increase costs to consumers, and undermine the power grid’s reliability and the region’s economy now and in the future.”

The Immediate Reliability Implications of Halting Offshore Wind Projects Serving New England


- ISO-NE's detailed reliability analysis demonstrates the pivotal nature of the offshore wind projects in construction to maintaining a reliable regional system.
- Specifically, that analysis indicates that preventing an offshore wind project of the scale of Revolution Wind from coming online would increase by about 25% the hours of the year when available capacity in the regional electricity system will not be able to meet the needs of electricity customers.¹
 - This estimate is very conservative. For example, it does not account for the potential impact of non-completion of Vineyard Wind 1 or failure to build other planned offshore wind farms.
 - Such shortage events would result, at the very least, in price and cost impacts that would eventually be felt by the electricity customers.
 - If such a shortage event coincides with another unexpected event (like the failure of a transmission line and/or a major generator) that further decreases available capacity to serve customers, there would be a real risk of emergency measures being taken that could cause customers to lose power.

¹ Grid Strategies analysis of Fei Zeng, ISO-NE memo on "Operating Reserve Deficiency Information – Capacity Commitment Period 2027-2028" (August 30, 2024) https://www.iso-ne.com/static-assets/documents/100014/iso_memo_on_operating_reserve_deficiency_information_ccp_2027_2028.pdf

The Pivotal Role of Offshore Wind in Meeting the Electricity Needs of New York's Businesses and Residents

The New York grid operator (NYISO) assumes 1,750 MWs of offshore wind generation in its base plan for maintaining a reliable electric system for the State – an assumption that begins with timely completion of Sunrise Wind (924 MW), currently planned for completion in July 2027, and Empire Wind 1 (816 MW), currently planned for completion in July 2027. In a recent “[Short-Term Assessment of Reliability](#),” NYISO found, specifically, that Sunrise was needed to maintain appropriate reliability margins in 2028.

These two projects are, by far, the largest generation projects scheduled to come online in all of New York State in the foreseeable future, and while all projects provide valuable contributions, these offshore wind projects provide more energy per MW of “nameplate capacity” than the land-based wind and solar that are also in development.

Project Name	MW	Type	Zone	Proposed Date
Baron Winds Phase II	117	W	C	Dec-25
Heritage Wind, LLC	200.1	W	B	Sep-26
Alle Catt II Wind	339.1	W	A	Dec-26
Bear Ridge Solar	100	S	A	Apr-27
Trelinia Solar Energy Center	80	S	C	Apr-28
Excelsior Energy Center	280	S	A	Nov-26
Empire Wind 1	816	W	J	Jul-27
Hecate Energy Cider Solar LLC	500	S	B	Dec-26
Brookside Solar	100	S	D	May-28
Garnet Energy Center, LLC	200	S	B	Apr-28
Hemlock Ridge Solar	200	S	B	May-27
Somerset Solar	125	S	A	Mar-27
Sunrise Wind LLC	924	W	K	Jul-27

Source: NYISO [“Short-Term Assessment of Reliability: 2025 Quarter 3,”](#) Oct. 13, 2025

The Specific Role of Sunrise Wind in Meeting the Electricity Needs of Long Island

The 924 MW Sunrise Wind project will provide over 10% of the electricity needs of Long Island because the Island (NYISO's "Zone K") has a Winter Peak demand of ~3,500 MWs, and Sunrise will regularly produce, in the winter, well over 700 MWs.

NYISO Forecast of Peak Winter Electricity Demand on Long Island

Year		Winter Coincident Peak Demand Forecast (MW)												NYCA
		A	B	C	D	E	F	G	H	I	J	K		
2026-27	Low Demand	2,208	1,503	2,555	1,055	1,309	1,900	1,599	519	933	7,300	3,229	24,110	
	Baseline	2,323	1,525	2,583	1,249	1,333	1,917	1,662	525	947	7,580	3,276	24,920	
	High Demand	2,530	1,744	2,656	1,253	1,339	1,934	1,668	529	951	7,740	3,296	25,640	
2027-28	Low Demand	2,202	1,499	2,655	1,094	1,300	1,900	1,612	519	937	7,250	3,262	24,230	
	Baseline	2,329	1,531	2,688	1,316	1,343	1,939	1,701	528	956	7,650	3,349	25,330	
	High Demand	2,668	1,827	2,898	1,469	1,347	1,965	1,719	530	963	7,880	3,364	26,630	
2028-29	Low Demand	2,201	1,496	2,763	1,095	1,298	1,875	1,631	519	941	7,220	3,291	24,330	
	Baseline	2,346	1,537	2,812	1,321	1,351	1,961	1,738	533	973	7,800	3,478	25,850	
	High Demand	2,962	1,843	3,182	1,477	1,363	1,997	1,787	538	994	8,110	3,507	27,760	

Source: NYISO ["Short-Term Assessment of Reliability: 2025 Quarter 3,"](#) October 13, 2025

Accordingly, the CEO of the Long Island Power Authority (LIPA) that supplies power to the Island, has stated that Sunrise Wind is a "critical component of our long-term reliability planning" and "ongoing delays complicate efforts to ensure adequate, dependable resources as demand grows and existing generation ages."¹

This power, that will keep the lights on across Long Island, will also reduce prices and the need to run other power plants and, therefore, demand for natural gas. Indeed, over the course of the year Sunrise may supply even more of Long Island's power, and it is in the winter when high electric and natural gas demand and high production from offshore wind all converge, and this contribution will be especially pivotal.

Sunrise Wind Builds on the Practical Experience From the (More Than Year-Long) Operation of South Fork Wind

- The output of Sunrise Wind can be predicted with unusual accuracy because of the documented performance of the South Fork project (located near the Sunrise site), which already supplies power to Long Island.
- LIPA has stated that South Fork “is a dependable source of generation for our customers, with performance matching our projections and capacity factors comparable to our most efficient baseload sources.”¹
- Indeed, the 54% annual capacity factor that South Fork experienced during the critical winter days spanning December 2024 to March 2025 is greater than the average performance of 42% annual capacity factor for coal plants in the U.S., as reported by the U.S. Energy Information Administration.²

1. LIPA Statement in “One Year of South Fork Wind” available at https://cdn.orsted.com/-/media/www/docs/corp/us/factsheets/sfwreport_web_vf.pdf

2. EIA Electric Power Monthly, <https://www.eia.gov/electricity/monthly/>

Update: The Nation's Largest Grid Operator, PJM, Argues the Offshore Wind Project in Construction Off Virginia Is Essential to Meet Electricity Needs – and Must Be Completed

PJM, the reliability coordinator and grid operator for an area spanning all or part of 13 States and D.C. and serving 67 million residents, made a court filing on January 13 regarding the vital need for the Coastal Virginia Offshore Wind (CVOW) project, which is in construction off the eastern coast of Virginia, to proceed to completion.

PJM forcefully notes that:

- “[CVOW] is an integral component of needed new generation that PJM has been relying upon to timely achieve commercial operation and continued development and [CVOW’s] ability to produce 2,489 megawatts for the interstate grid will help mitigate the capacity shortfall PJM is now experiencing, which is projected to continue into the future.”

PJM specifically adds:

- “There are national security benefits in the form of a stronger and more reliable electric grid . . . that will accrue once the CVOW project is operational and able to contribute power to the interstate grid.”

And concludes:

- “[D]elays of [CVOW’s] construction and commencement of commercial operation will also adversely affect the planning of future needed transmission infrastructure throughout the multistate PJM region . . .”

These statements reflect both CVOW’s size and PJM’s analysis that offshore wind will have an Effective Load Carrying Capability of 67% - greater than many other types of generation, including gas combustion turbines being built to support data centers.